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Abstract. Analysing and modelling pedestrian activity in built environ-
ments allows us to understand, assess, predict, and manage its dynamics. 
Nonetheless, pedestrian activity data might not be available everywhere. An 
alternative can suggest predicting pedestrian activity by considering environ-
mental characteristics and the geometrical configuration of the environment. 
This paper presents a Machine Learning pedestrian activity level prediction 
model, which is trained and tested using data extracted from smart city sen-
sor systems from multiple cities. The proposed model was applied to Greater 
London, UK, and the prediction results were compared with pedestrian ac-
tivity data provided by Transport for London. Our results show that the 
model has high potential to predict pedestrian activity levels in a city, but 
that further research is needed to obtain more reliable results. 
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1. Introduction

Diverse digital technologies and sensors are used today in smart cities to col-
lect different types of data for better city management aimed to improve cit-
izens’ quality of life. The Hystreet platform1, for example, monitors Pedes-
trian Activity (PA) by continuously counting the number of pedestrians, us-
ing laser scanners positioned on building facades. By modelling and analys-
ing PA, city officials can better predict and manage city traffic and under-
stand the resultant movement dynamics (Duives et al. 2015). Dynamic PA 
data can assist city officials and improve pedestrian routing services by 

1 https://hystreet.com/en/locations#/ 
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suggesting custom routes for pedestrians wishing to avoid empty streets for 
safety reasons or overcrowded areas for health reasons. Still, these sensors 
are sparse, and hence PA data is very limited, forcing cities to rely on site and 
periodic (household) surveys, which are limited and expensive. Research 
shows that PA can be predicted by analysing the city structure and its features 
that represent the urban form (Qin 2016, Omer et al. 2015). These, both static 
and dynamic, can be retrieved from geospatial catalog, such as Open-
StreetMap (OSM) (Cohen & Dalyot, 2020). We propose a Machine Learning 
(ML) prediction model, which is trained and tested using smart sensor data
that counts PA from different cities: the Hystreet platform in Germany and
Bluetooth (BT) sensor network in Tel Aviv, Israel. The prediction model re-
veals the relationships between the urban structure and features and the PA
in these areas, and then is applied to new areas.

2. Methods

The proposed supervised ML prediction model uses as features OSM’s street 
segments and different city elements, including their attributes. As model la-
bels, the smart sensors’ PA counts corresponding to each street segment. PA 
counts are classified to five categories (Table 1), or levels, based on the work 
of Helbing and Johansson (2009). 

PA Levels 
Model La-
bels 

Density 
range 

< 0.7 m/p 5 Highest 

< 0.95 m/p 4 

< 1.2 m/p 3 

< 1.5 m/p 2 

> 1.8 m/p 1 Lowest 

Table 1. PA levels in units of meters per person, according to Helbing and Johansson (2009). 

Figure 1 illustrates the implemented ML workflow. OSM street network was 
downloaded and transformed into a walkable streets graph by examining the 
OSM highway tags of the segments to retain pedestrian streets only. Table 2 
depicts the feature engineering used in the model: (1) city features, which are 
derived from OSM tags; (2) centrality features, which are calculated based 
on OSM's street network; and (3) time-related features. For the city features 
we adopted the works of Qin (2016) and Omer et al. (2015) that list city and 
spatial features that effect PA. Centrality features are generated using graph-
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based measures (Cooper 2015) that help identify the most central street seg-
ments within a particular area. 

Figure 1. ML prediction model workflow. 

Feature 
Group 

Model Features Calculation method 

City 
Features 

Highway Categorical values based on OSM’s highway tag. 

Land use 
Categorical values based on OSM’s land use tag or nearby 
element’s tag (e.g., residential, retail). 

Amenity 

The number of elements with the same tag that are within 
20 meters from the street segment. 

Office 

Tourism 

Shop 

Building 

Natural 

Leisure 

Centrality 
Features 

Betweenness 
Street centrality indices. 

Closeness 

Time 
Features 

Hour Hour of the day. 

Day 
Day of the week order (for example, Sunday=1, Monday=2 
…). 

Table 2. Feature engineering and calculation method. 
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PA label data (pedestrian counts translated to levels) were retrieved from two 
smart monitoring systems: 1) The Hystreet platform, which continuously 
counts pedestrians on streets in cities throughout Germany; 2) A BT sensor 
network, located in Tel-Aviv, Israel, consisting of 65 point-to-point BT sen-
sors, and 78 street segment streets (links) between adjacent sensors. PA is 
measured in meters per person, while the systems provide the number of 
people per hour. Therefore, PA is calculated (Equation 1) by dividing the 
street segment length with the number of people per hour multiplied with 
the time it takes them to cross the street (speed is defined as the commonly 
used average walking speed, which is 3,000 meters per hour): 

𝑃𝐴 =

[

𝑠𝑡𝑟𝑒𝑒𝑡 𝑠𝑒𝑔𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 ∗ [
𝑠𝑡𝑟𝑒𝑒𝑡 𝑠𝑒𝑔𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ[𝑚𝑒𝑡𝑒𝑟] 

𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑎𝑖𝑛 𝑠𝑝𝑒𝑒𝑑
[
𝑚𝑒𝑡𝑒𝑟
ℎ𝑜𝑢𝑟

]

]

[ℎ𝑜𝑢𝑟] ]

[
𝑚𝑒𝑡𝑒𝑟
𝑝𝑒𝑟𝑠𝑜𝑛

]
  [1] 

Our prediction model is based on the Random Forest (RF) classifier. RF com-
bines tree predictors in such a way that each tree depends on the values of a 
random vector sampled independently with the same distribution for all 
trees in the forest. Cross validation was conducted on the data to resolve 
overfitting, with 70% of the samples used for training, and 30% for testing. 

3. Preliminary Findings

The ML prediction model includes 141,384 training samples: 83,544 from 9 
German cities (Hystreet data), and 57,840 samples from Tel-Aviv (BT data). 
All cities represent heterogeneous street arrangements that include variety 
of urban morphologies, land uses and settings. Table 3 presents the resulting 
confusion matrix based on 27,379 test samples and label (PA level) predic-
tions. Despite the high F1-score and accuracy values, it should be noted that 
labels are not evenly distributed, where most samples (90%) belong to Label 
1 (least dense streets), thus the prediction of this label is very accurate. How-
ever, although the recall and precision values for the other labels is between 
44% and 67%, most of the errors are predictions of adjacent labels, indicating 
the reliability potential of the resulting prediction model. As an example, of 
the 927 samples from Label 3, 604 were correctly classified (65%), while 282 
samples (30%) were classified as Labels 2 and 4, and only 41 samples (less 
than 5%) were classified as Labels 1 and 5. 
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Table 3. Prediction model confusion matrix. 

As PA levels rely on a set of features, which are considered universal, we fur-
ther evaluate the prediction model on unseen data – Greater London, UK, 
and generated PA level values for the entire street network. As reference, we 
use PA level values provided by the Transport for London (TfL) that docu-
mented six years of data consisting of 300,000 walking trips. TfL’s PA data 
is organized as 15,477 hexagons covering the Greater London area, each with 
a measurement of meters walked per square meter. Figure 2 depicts the two 
PA results, showing that the centre of London is the area with the densest PA 
in the Greater London, and as we move away from the centre there is a clear 
trend of diminishing PA intensity. Other dense areas, which are located 
within the suburbs, mostly correspond to local shopping streets, central sta-
tions, and schools, which tend to be more crowded. Although the prediction 
model shows an overall resemblance to TfL’s dataset, even in London’s out-
skirts, there exists some differences between the two models (Pearson corre-
lation = 0.487).  

In conclusion, the developed PA prediction model relies on more than 
140,000 samples, where testing showed a high accuracy of about 95%. Using 
Greater London for model evaluation, the results show robustness of the 
model and its potential to predict PA for new, unfamiliar areas. We believe 
that as we use more PA samples from different cities, the prediction model 
will be adjusted better to other city arrangements and characteristics, pro-
ducing more reliable results. Overall, this methodology of using ML to pre-
dict PA proves to be accurate and reliable for better city management, having 
the potential to replace on site and periodic surveys, which are limited and 
expensive. 

Labels 1 2 3 4 5 Number of  samples Recall
1 24624 163 74 22 4 24887 98.9%

2 197 333 191 34 4 759 43.9%

3 37 147 604 135 4 927 65.2%

4 7 8 127 390 47 579 67.4%

5 12 2 5 79 129 227 56.8%

Number of predicted samples 24877 653 1001 660 188 F1 score 99.0%

Precision 99% 51% 60% 59% 69% Accuracy 95.3%

True 

Labels

Predicted Labels 
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Figure 2. PA in Greater London during the weekdays according to TfL’s reference model (left) 
and the developed ML prediction model (right). 
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