
The Effect of Post-Processing in Stop-Move 
Detection of GPS Data: A Preliminary Study 

Eun-Kyeong Kim*,**,1, Elena Ebert*, Robert Weibel* 

* Department of Geography, University of Zurich, Switzerland
** University Research Priority Program (URPP) ‘Dynamics of Healthy Ag-
ing’, University of Zurich, Switzerland

Abstract. Stop-move detection has been an essential step to construct se-
mantic trajectories and extract meaningful activity sequences of moving ob-
jects. Detecting stop and move segments accurately is critical because errors 
occurred in stop-move detection can be propagated and amplified in later 
steps in trajectory data analysis. In particular, post-processing that merges 
or discards the detected stop-move segments can make an impact on the ac-
curacy and characteristics of detected stops and moves. Although many stop-
move detection algorithms exist and new methods are continuously pro-
posed in the field, studies on comparing the performance of the stop-move 
detection methods are still scarce.  

In this study, we evaluated the effect of post-processing in stop-move detec-
tion with four selected existing stop-move detection algorithms—Candi-
dateStops, SOC, POSMIT, and MBGP—in two input-data scenarios: (1) orig-
inal data and (2) sampled data. The detected stops were assessed by two 
quantitative measures that quantify the accuracy at different levels of aggre-
gation in space and time: (1) accuracy based on individual data points (i.e., 
F-measure) and (2) the shape of detected stops (i.e., shape compactness).
With the case study, we found that the impact of post-processing on the de-
tection results can vary by a selected algorithm and input data sparsity. The
results can potentially provide insights into how to adopt and maneuver the
stop-move detection methods for GPS data analysis.
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1. Introduction
Trajectory segmentation, particularly stop-move detection, has been an es-
sential step to construct semantic trajectories and extract meaningful activity 
sequences of moving objects [1]. Detecting stop and move segments accu-
rately is critical to infer further semantics of segments—activities in stops and 
transportation modes of moves in the case of human subjects—, because er-
rors occurring in stop-move detection can be propagated and amplified in 
later steps in trajectory data analysis.  

Stop-move detection methods for GPS data often consist of two phases: stop-
move detection, in which initial stop-move segments are detected; post-pro-
cessing, in which the detected segments are merged or discarded upon crite-
ria. Some stop-move detection algorithms inherently integrate such post-
processing procedures, e.g., SMUoT – Zhao et al. [2]. Some other approaches 
conduct additional post-processing after applying an existing algorithm, e.g., 
Fillekes et al. [3]. As a part of trajectory segmentation, such post-processing 
can make an impact on the accuracy and characteristics of detected stops and 
moves. Although many stop-move detection algorithms exist and new meth-
ods are continuously proposed in the field, studies on comparing the perfor-
mance of the stop-move detection methods are still scarce. Hence, this study 
evaluates the effect of post-processing in stop-move detection for GPS data. 
First, we select four existing stop-move detection algorithms—CandidateS-
tops, SOC, POSMIT, and MBGP and analyze the post-processing effect in two 
input-data scenarios, (1) original GPS data and (2) sampled data, by quanti-
fying the accuracy at two levels of spatiotemporal aggregation.  

2. Data and Methods

2.1. Data Collection and Labelling
GPS and Accelerometer (ACC) datasets analysed in this study were collected 
from 161 participants for a 30-day period in the Mobility, Activity and Social 
Interaction Study (MOASIS) [4]. Stop-move detection is based solely on GPS 
data. The sampling rate of GPS data is 1 Hz and that of ACC is 50 Hz.  
To evaluate the accuracy, labelled GPS data were constructed based on ACC 
and GPS data by manually identifying stops via the interactive visualization 
tool for data labelling task. Out of 161 participants, 38 participants with rel-
atively more GPS points were sampled and 90 study days with more GPS data 
points (30 days for each of Tuesday, Thursday, and Sunday) were extracted, 
in order to construct balanced labelled data across weekdays and partici-
pants. The GPS points were labelled as a stop upon the following criteria: 
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velocity less than 1 m/s [5]; acceleration between −0.3 m/s2 and 0.3 m/s2 [5]; 
stop duration at least 10 minutes.  

2.2. Stop-Move Detection Algorithms and Post-Processing 
To assess the post-progressing effect on stops detected by a variety of stop-
move detection algorithms, four stop-move detection algorithms were se-
lected: CandidateStops [5], SOC (Sequence Oriented Clustering) [6], 
POSMIT (PrObability of Stops and Moves In Trajectories) [7], and MBGP 
(stop detection method by Montoliu, Blom and Gatica-Perez) [8]. On one 
hand, the selected algorithms meet the criteria of a good algorithm—maxi-
mum parsimony, ease of understanding, and high performance—to different 
degrees: lower (CandidateStops), moderate (MBGP), and highest (SOC; 
POSMIT) levels. SOC and POSMIT are expected to outperform CandidateS-
tops and MBGP in stop detection. On the other hand, the selected algorithms 
implement different key measures and built-in post-processing procedures 
(Table 1).  

Algorithm CandidateStops SOC POSMIT MBGP 

Expected Usefulness Low High High Moderate 

Key Measure Density Density Probability Density 

Post-Processing None Merging stops None Merging stops 

Table 1. Algorithmic Characteristics and Built-in Post-Processing of Selected Algorithms. 

While CandidateStops and POSMIT do not have inherent post-processing in 
the algorithm, SOC and MBGP recognize stops too close in time and space as 
a single stop, using input parameters, i.e., maximum time gap and distance 
between subsequent GPS points. On top of the built-in post-processing of 
SOC and MBGP, we applied an additional post-processing procedure to de-
tected stops by each of the four algorithms with the following rules: 

• All moves shorter than 3 minutes were removed and classified as noise;

• Two stops are merged if the last GPS point of the preceding stop and the
first GPS point of the following stop are within 150-meter distance and 1-
hour time interval.

2.3. Evaluation Measures
The detected stops are assessed by two quantitative measures that quantify 
the accuracy at different levels of aggregation in space and time: (1) accuracy 
based on individual data points (i.e., F-measure based on confusion matrix 
[9]) and (2) the shape of detected stops (i.e., shape compactness based on the 
area and longest axis of a stop [10]).  
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2.4. Input-Data Scenarios 
To observe how the post-processing effect changes over different input da-
tasets, four algorithms are evaluated in two input-data scenarios: (1) original 
GPS data and (2) sampled data. For the second scenario, the GPS points were 
sampled with the rate of 1/60 Hz (1 point every minute). 

3. Results

3.1. Accuracy at a GPS Data Point Level
The stop classification accuracy is compared at an individual GPS point level 
for the stops detected with vs. without applying post-processing for each al-
gorithm. Each plot is drawn for each input-data scenario (Figure 1). 

Figure 1. F-measure and percentage of valid results for stop detection accuracy measurement 
at the GPS point level with vs. without applying post-processing: Comparison over original 
data (upper) and comparison over regularly sampled data with the rate of 1 minute (lower).  

Scenario 3-1: Comparison over regularly sampled 
data with the rate of 1 minute

Pre    Post Pre    Post Pre    PostPre    Post

CandidateStops SOC POSMIT MBGP

CandidateStops SOC

Pre    Post Pre    Post

Scenario 1: Comparison over original data

POSMIT

Pre    Post

MBGP

Pre    Post
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3.2. Shape Compactness at an Individual Stop Level 
The shape compactness of the detected stops was evaluated at an aggregated 
level of an individual stop with vs. without applying post-processing for each 
algorithm. Each table represents the results based on each input-data sce-
nario (Table 2, Table 3). The larger shape compactness value indicates more 
circular shape. 

Algorithm Process Min. Q1 Median Q3 Max. Mean 

CandidateStops 
Pre 2.46*10-17 6.57*10-15 1.91*10-15 8.01*10-15 5.88*10-11 8.04*10-14 
Post 3.82*10-17 3.87*10-11 9.30*10-09 1.34*10-06 3.38*10-03 3.75*10-05 

SOC 
Pre 8.82*10-10 7.84*10-09 2.55*10-08 1.47*10-07 2.57*10-03 2.03*10-05 
Post 8.82*10-10 7.33*10-09 2.54*10-08 2.06*10-07 2.57*10-03 2.17*10-05 

POSMIT 
Pre 1.39*10-08 4.43*10-06 4.09*10-04 1.72*10-02 1.13*1001 7.48*10-01 
Post 1.39*10-08 4.43*10-06 4.09*10-04 1.72*10-02 1.13*1001 7.48*10-01 

MBGP 
Pre 2.76*10-11 6.55*10-08 1.23*10-07 2.11*10-07 5.35*10-06 1.77*10-07 
Post 2.76*10-11 7.29*10-08 1.46*10-07 3.18*10-07 8.62*1000 9.30*10-02 

Labelled data 1.99*10-11 6.72*10-10 3.08*10-09 7.79*10-09 8.71*10-07 6.97*10-08 

Table 2. Shape compactness of detected stops based on original data (Scenario 1). 

Algorithm Process Min. Q1 Median Q3 Max. Mean 

CandidateStops 
Pre - - - - - - 
Post 4.44*10-13 2.06*10-12 1.08*10-11 4.63*10-05 1.12*10-01 9.78*10-03 

SOC 
Pre 5.54*10-11 2.38*10-09 9.36*10-09 3.12*10-08 1.39*10-04 1.22*10-06 
Post 3.07*10-10 6.17*10-09 5.39*10-08 3.55*10-04 5.10*1000 1.31*10-01 

POSMIT 
Pre 6.26*10-09 4.10*10-06 3.27*10-04 1.47*10-02 1.12*1001 6.05*10-01 
Post 6.26*10-09 4.10*10-06 3.27*10-04 1.47*10-02 1.12*1001 6.05*10-01 

MBGP 
Pre 9.38*10-11 1.11*10-08 5.06*10-08 1.02*10-07 8.26*10-07 8.02*10-08 
Post 9.01*10-10 2.53*10-07 2.63*10-05 3.56*10-03 1.06*1001 4.23*10-01 

Labelled data 1.99*10-11 6.72*10-10 3.08*10-09 7.79*10-09 8.71*10-07 6.97*10-08 

Table 3. Shape compactness of detected stops based on regularly sampled data with the rate 
of 1 minute (Scenario 2).  

4. Discussion
The evaluation at two aggregation levels implies that the impact of post-pro-
cessing in stop-move detection varies by base stop-move detection algo-
rithms as well as input data traits. In summary, the major findings are:  

• At a data point level, the accuracy of stop-move detection without post-
processing is the lowest with CandidateStops and the highest with MBGP,
although SOC and POSMIT were expected to perform the best.
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• At a data point level, post-processing largely improves the accuracy for
CandidateStops, but makes little impact on the outputs of POSMIT, and
worsens the accuracy for MBGP and SOC, especially for the sparse input
data with low sampling rates.

• At an individual stop level, post-processing tends to change detected
stops into more circular-shaped ones, with the highest impact on the out-
puts of CandidateStops and weaker impacts on the results of SOC and
POSMIT. The shape compactness of the detected stops from SOC and
MBGP without post-processing is similar to that of the labelled data.
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